
Laboratory 12: PIC programming part 1.

1

Laboratory 12 (draws on lab text by Alcataire)

Programming a PIC Microcontroller - Part 1

Required Components:
 1x PIC16F88 microcontroller

 1x 0.1 F capacitor

 1x LED

 1x 330 resistor

 Ix lk resistor

 1x NO button switch

Required Special Equipment and Software:
 MPLab X, microchip technology’s IDE

 XC8, opensource compiler for PICs

 PICkit 2 software

 CanaKit USB PIC Programmer

 cortlandStd.h file from course website

Introduction
The integrated circuits that we have worked with in the last 2 labs (logic gates, flip-flop memory, timer,

counter, BCD to 7segment decoder) have value primarily as stepping stones to today’s lab using a micro-

controller/programmable integrated circuits. Some provide basic building blocks (logic gates, flip-flops,

timer) from which the PIC is formed. Others are hardwired examples (timer, counter 7segment decoder)

of a functional unit that can be controlled by an integrated circuit. The key improvement in the chips we

will use today over the chips we used last week is this:

 Microcontrollers are programmable, we simply need to tell the chip to do what we wish it to do

as it is a computer on a chip.

Laboratory 12: PIC programming part 1.

2

Specific microcontrollers
There are two commonly used microcontrollers, one is made by Microchip Technology Inc.

(www.microchip.com) and the other by Arduino. In lab today we will be using PICs by Microchip, in

particular the PIC16F88. You might choose a microcontroller based on

 Price

 Speed

 Memory

 Number of pins

 Programming language.

The PIC is cheap (~$3/chip), fast (up to 20MHz),

and has a decent amount of memory (7 kB for

the program and 368 B for data) and 16 of its

18 pins can be used for input/output.

Speed

The PIC has a number of internal clock rates

that vary from 31 kHz to 8MHz. For higher

speeds you can use an external clock oscillating

as fast as 20MHz.

Memory

The PIC’s memory is electrically erasable programmable read only memory (EEPROM), this is different

from a flip-flop in that it remembers its value even after the power goes off.

Input/Output

The PIC can take information in from a circuit in the form of a voltage it senses on a pin, an input. The

PIC can also issue information to the circuit in the form of a voltage it applies to a pin, an output.

Depending on how you have configured the pins the PIC will know if a pin is an input or an output pin. In

all situations the voltage must be positive (wrt ground) and be no more than 5V. The kind of voltage the

pin should take in/apply is also important. The PIC can either expect binary input/output (close to 0V is

LOW and close to 5V is HIGH) or analog input/output which is represented internally to the PIC as a10-

bit binary number. Today we will only deal with binary input/output.

Binary Input/Output

For binary input/output the pins are organized into two bytes registers (8 bits) called RA and RB. They

act just like arrays of flip-flops. There are tri-state registers (TRIS) associated with RA and RB (e.g., TRISA

and TRISB) that you use to select the state of the register, LOW is output, HIGH is input.

Powering the PIC

The PIC uses a 5V input supply and needs VSS =0V and VDD =5V.

Figure 1 PIC 16F88 microcontroller pinout

http://www.microchip.com/

Laboratory 12: PIC programming part 1.

3

Programming a PIC using MPlab X
MPlab X is an integrated development environment, IDE. For our purposes this will mean that four tasks

can be done in one spot:

 Find files in projects you have written using the file manager.

 Write code using the text editor.

 Transform your code from human readable to machine readable form using the compiler.

 Load your compiled program on the PIC chip.

Getting Started:
Create a new project using a PIC 16F88 programmed using the XC8 compiler. This project will cause a

LED to flash using a 1MHz internal clock to keep time.

1. Logon to the computer using the Electronics account, password student.

2. Open MPlab X from the taskbar at the bottom of the screen.

3. Under File select New Project…

4. In the pop-up window under Projects select Standalone Project and then click Next.

5. In the next window select

a. Family type: Mid-Range 8bit MCUs and

b. device PIC 16F88 and then click Next.

Laboratory 12: PIC programming part 1.

4

6. Place the PIC chip in the

CanaKit programmer

using the smaller of the

two mounts. Orient the

chip with pin 1 (dot

end) is against the

engage lever. Clamp the

chip in place by flipping

the lever down.

7. Plug the CanaKit into

the computer using a

USB cable. SN:0|Hoss

will pop-up as a PICkit2

Hardware Tool. Select it

and click next.

8. Select the most recent XC8 compiler and click Next.

9. Name your project something meaningful to you.

Perhaps blinkTodaysDate and click Finish.

10. Your project will now appear with many folders in the

top left corner of MPlab X.

Writing your program
Notice that almost all of the folders are empty. We will create two files to hold our human readable

code written in a variant of the C language:

 C Header File—This will hold the information that sets-up our chip. All of this can be changed.

We will leave it alone.

 C Main File—This will hold the bulk of the code that changes from one program to the next. .

This file contains the function main() which is where all C code starts running.

1. Create the Header file: under

 File select

NewFile.. then select

 C then select

C Header File

then click Next.

Laboratory 12: PIC programming part 1.

5

2. The change the name to cortlandStd and leave the Extension as h and click Finish.

3. Open cortlandStd.h on the course website:

http://facultyweb.cortland.edu/douglas.armstead/S16/Electronics/labs/cortlandStd.h

4. Copy from the web file and paste into the header file you just created in MPlab X duplicating

everything from

//BEGIN CONFIG

to

//END CONFIG

pasting it between

extern “C”{

and

}.

5. Create the C Main File: again under

File select

NewFile.. then select

C then select

C Main File

Then click Next.

6. Change the File name to something meaningful. Once you are satisfied click Finish.

7. A barebones file will now appear in the text editor containing the following element:

a. Comments (grey and surrounded by the symbols/* */) these are here to clarify the text to

the reader explaining purpose, definitions, logic, etc. that may not be obvious. In this case it

specifies the filename, author, and date the file was originally created.

b. Pre-processor directives (anything that starts with a #) that Include files and define

constants. Included files explain to the program how to perform routine tasks.

i. stdio.h explains how to do standard input/output operations such as printing to the

screen and reading from the keyboard.

ii. Stdlib.h explains how to convert between variable types. The # in front of include

tells the C compiler to treat the include command in a special way.

c. The main function. It has an integer type and in principle has two arguments (argc and argv).

These have no purpose in this context. The main function is where things start to happen.

i. The return statement, all functions end at a return statement which must match

the type of the function. EXIT_SUCCESS=0 is a constant with integer value defined in

stdlib.h.

d. Grammar: all regular statements (e.g., the return statement) end with a semicolon (like

periods at the end of a sentence) and must be spelled and capitalized with care. Pre-

processor directives never end with semicolon.

http://facultyweb.cortland.edu/douglas.armstead/S16/Electronics/labs/cortlandStd.h

Laboratory 12: PIC programming part 1.

6

Basic configuration

8. Alter the program so it knows it will run on a PIC by.

a. Defining the clock frequency that we will set the PIC to use, 1MHz:

#define _XTAL_FREQ 1000000

b. Including xc.h which defines how to interact with a PIC:

#include <xc.h>

c. Include cortlandStd.h. Header files that are not part of the standard installation must be put

in quotes

#include “cortlandStd.h”

d. Set the clock rate (more than defining it). Do this by selecting the proper internal RC

frequency, IRCF, code using binary (page 40 of the PIC16F87/88 manual gives the frequency

codes). This belongs inside main:

OSCCONbits.IRCF=0b100; //This is what actually sets the frequency to 1MHz.

At this stage your code should look like this.

Figure 2: Typical PIC program configuration writen in C.

Specifying INPUT/OUTPUT pins

The value of TRISA and TRISB determine if a pin is output (0) or input (1). We will use pin 6 which is RB0,

according to Figure 1, as an output pin to turn on and off our LED. The code is:

TRISB0=0; //set RB0 as output.

Set the value of RB0:

We can now set the value of pin 6 (RB0) to either 0V:

RB0=0;

Or to 5V:

Laboratory 12: PIC programming part 1.

7

RB0=1;

Applying one voltage and then immediately the other happens too quickly to see, we need a delay which

is provided by the __delay_ms() function:

__delay_ms(100); //wait 100ms, notice the double underscore before delay.

(MPlab X will complain about __delay_ms being undefined, this complaint is a bug in MPlab X).

To do this repetitively we need a loop, an infinite loop will do:

while(1==1){

thing to be repeated.

}

Putting these all together in main() looks like this:

Figure 3: The main() function for the blink project.

Programming the microcontroller
A single button in the IDE compiles and programs the microcontroller, click it.

If all goes well the programmer will turn yellow, flash red and then return to yellow. The ouput window

will show build progress and when programming is completed that the target is running. The LED will

not flash, to get that you must build the circuit.

DO NOT REMOVE THE CHIP WHILE IT IS BEING PROGRAMMED (RED LIGHT FLASHING).

Laboratory 12: PIC programming part 1.

8

Using the PIC in a circuit
Just like the other IC chips we have used, the PIC must be powered. On the PIC16F88, as seen in Figure

1, this is done via pins 5 and 14.

Unclamp the chip and place it in a

breadboard with the connections shown

in Figure 4.

Figure 4: Connections to PIC 16F88, 5V on pin 4 is not actually
necessary.

Laboratory 12: PIC programming part 1.

9

Interrupts
The program your PIC is running will do the same thing in the same order forever. One way to change

the order of execution is to use an interrupt. Create a new project called offInterrupt, setting it up in the

same way as you did the blink project.

We will add to the main function and create a new interrupt function called freeze()

Figure 5: The unique part of offInterrupt.c

The main() function has gained:

ANSEL=0;

OPTION_REG=0b01111111;

INTCON=0b10010000;

which

Laboratory 12: PIC programming part 1.

10

 Make any input digital (and shut off the analog to digital converter which saves power):

 Starts setting-up the interrupt by assigning values to the option register which instructs the chip

to turn on and off various interrupt options. We set the Option Register all at once using a

binary (0b before a number makes C recognize it as being a base 2) representation. Alternatively

you can set the Option Register bits one at a time. I have placed the meaning of each bit value

given in the comments:

 OPTION_REGbits.nRBPU =0; //bit 7 enable RB0 pull-up
 OPTION_REGbits.INTEDG=1; //bit 6 interrupt on rising edge of RB0/INT pin.
 OPTION_REGbits.T0CS=1; //bit 5 Transition on RA4/T0CK1 pin
 OPTION_REGbits.T0SE=1; //bit 4 incr. on high->low transition of RA4/T0CK1 pin
 OPTION_REGbits.PSA=1; //bit 3 Prescales Watch Dog Timer, WDT
 OPTION_REGbits.PS = 0b111; //bits 0-2, multiplier of 1:128 used with WDT rate.

 Continues setting up the interrupt by assigning values to the control register which keeps track

of which interrupts are allowed and which have been triggered.The Control Register assignment

was done using a binary representation. Alternatively you can set Control Register bits one at a

time. I have placed the meaning of each bit value given in the comments:

INTCONbits.GIE=1; //bit 7 enable global interrupts
 INTCONbits.PEIE=0; //bit 6 no peripheral interrupts allowed
 INTCONbits.TMR0IE=0; //bit 5 no timer interrupts allowed
 INTCONbits.INTE=1; //bit 4 RB0/INT External interrupt enabled
 INTCONbits.RBIE=0; //bit 3 no RB port change enabled
 INTCONbits.TMR0IF=0; //bit 2 timer overflow flag off
 INTCONbits.INTF=0; //bit 1 external interrupt flag off.
 INTCONbits.RBIF=0; //bit 0 RB port change flag off.

It is important to note that only Option Register bits 6 & 7 matter for this example (i.e., bits 0-5

are irrelevant). The reason being that the external interrupt is the only interrupt enabled in the

Interrupt Control Register. Note also that with INTCON bits 3, 5 and 6 set to zero, bits 0 and 2

become irrelevant.

The program jumps to freeze() if an interrupt occurs. Once there freeze :

 checks for an external interrupt

 flag flashes the LED off for 0.5s

 clears the interrupt flag and then

 returns to main().

You will attach a normally off switch to RB0 to interrupt the normal flow of the program.

See the appendix for more details about the Option and IntCon registers.

Laboratory 12: PIC programming part 1.

11

Procedure:
1. Use MPlabX to create a blink project drawing on Figs. 2 and 3.

2. Program your PIC chip and then install it in your circuit.

3. Alter your program to make the LED flash at a rate of 1Hz.

4. Create an entirely new project called offInterrupt, write the program and save it to the PIC.

5. Draw the schematic below for the circuit that you will use your PIC being certain to include all

components.

a. The program should turn on an LED attached to PortB.7.

b. A switch connected to PortB.0 should cause the LED to turn off for half a second, and

then turn back on again. Use a NO button switch. You must make sure to wire the

switch so that the ON state applies 5V DC to the pin, and the OFF state grounds the pin.

Do not allow the input to “float” in the OFF state.

c. Show me your schematic before you build it and convince me that your changes are

appropriate.

d. When you are sure you have all components wired properly, apply power to the circuit

and test it for proper function.

Always use a chip-puller to remove your chip from the breadboard so you don’t damage it by

bending or breaking its pins.

Your schematic:

Laboratory 12: PIC programming part 1.

12

LAB 12 QUESTIONS

Names:

1. Explain all differences between PORTA and PORTB if using the pins for inputs. Refer to Section

7.8 in the textbook for more information.

2. For the offInterrupt example, if the button is held down for more that 0.5 second and then

released, is it possible that the LED would blink off again? If so, explain why. (Hint: consider

switch bounce.)

3. Show two different ways to simply and properly interface an LED to a PIC output pin. One circuit

should light the LED only when the pin is high (this is called positive logic) and the other circuit

should light the LED only when the pin is low (this is called negative logic).

4. Laboratory 13 has a prelab, make sure you have done it before arriving in Lab.

Laboratory 12: PIC programming part 1.

13

Appendix

cortlandStd.h Entries:
The rest of a basic configuration which is boiler plate (you never have to change it).

// BEGIN CONFIG

#pragma config FOSC = INTOSCIO

// Oscillator Selection bits (selects internal oscillator at 31kHz)

#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT disabled)

#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)

#pragma config BOREN = ON // Brown-out Reset Enable bit (BOR enabled)

#pragma config LVP = OFF

// Low-Voltage (Single-Supply) In-Circuit Serial Programming

 // Enable bit (RB3 is digital I/O, HV on MCLR must be used for programming)

#pragma config CPD = OFF, CP = OFF, WRT = OFF

// Flash Program Memory Code Protection bits

 //(Code protection and write protection off)

//END CONFIG

These configurations can be set by menu using Window -> PIC memory views -> Configuration Bits. The

button Generate Source Code to Output gives you text that can be cut and pasted into your code.

Option Register:
The Option register is a one byte, 8 bit register whose values are, from the datasheet:

bit 7 nRBPU: not PORTB Pull-up Enable bit
1 = PORTB pull-ups are disabled
0 = PORTB pull-ups are enabled by individual port latch values

bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RB0/INT pin
0 = Interrupt on falling edge of RB0/INT pin

bit 5 T0CS: TMR0 Clock Source Select bit
1 = Transition on RA4/T0CKI pin
0 = Internal instruction cycle clock (CLKO)

bit 4 T0SE: TMR0 Source Edge Select bit
1 = Increment on high-to-low transition on RA4/T0CKI pin
0 = Increment on low-to-high transition on RA4/T0CKI pin

bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module

bit 2-0 PS: Prescaler Rate Select Bits

PS=Bit Value TMR0 Rate WDT Rate

000=0 1: 2𝑃𝑆+1 = 2 1: 2𝑃𝑆=1

001=1 1:4 1:2

010=2 1:8 1:4

Laboratory 12: PIC programming part 1.

14

… … …

110=6 1:128 1:64

111=7 1:256 1:128

Interrupt Control Regiser:
The Interrupt Control register is a one byte, 8 bit register whose values are, from the datasheet:

bit 7 GIE: Global Interrupt Enable bit
1 = Enables all unmasked interrupts
0 = Disables all interrupts

bit 6 PEIE: Peripheral Interrupt Enable bit
1 = Enables all unmasked peripheral interrupts
0 = Disables all peripheral interrupts

bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit
1 = Enables the TMR0 interrupt
0 = Disables the TMR0 interrupt

bit 4 INTE: RB0/INT External Interrupt Enable bit
1 = Enables the RB0/INT external interrupt
0 = Disables the RB0/INT external interrupt

bit 3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
0 = Disables the RB port change interrupt

bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit
1 = TMR0 register has overflowed (must be cleared in software)
0 = TMR0 register did not overflow

bit 1 INTF: RB0/INT External Interrupt Flag bit
1 = The RB0/INT external interrupt occurred (must be cleared in software)
0 = The RB0/INT external interrupt did not occur

bit 0 RBIF: RB Port Change Interrupt Flag bit A mismatch condition will continue to set flag bit RBIF.
Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
0 = None of the RB7:RB4 pins have changed state

More external interrupts are possible on RB4-7 if one chose to activate them.

